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ABSTRACT 
 
 

A role for Fgl2 (fibroleukin) in thrombophilic-associated human fetal loss has been 

indicated by previous studies.  Clotting of vascular vessels of the placenta and fetus interferes 

with adequate blood circulation.   

The human Fgl2 gene was sequenced with identification of six SNPs, suggesting an 

association with a population of women suffering from recurrent fetal losses. A small sample 

size however, prevented precise statistical analyses of this association.  In vitro, human 

endothelial cells (HUVECs) were not found to constitutively express Fgl2, but were shown to 

up-regulate its expression when challenged with IFN-γ and TNF-α.  Interestingly, TNF-α was 

only shown to induce expression of Fgl2 in HUVECs from male donors and not female donors.   

A larger case-control study is needed to examine the relationship of Fgl2 with recurrent fetal loss. 

The role of estrogen in the Th1-induced expression of Fgl2 by HUVECs should also be 

examined.  

 

INDEX WORDS:  Fibroleukin, Fgl2, thrombosis, recurrent fetal loss, endothelial cells, 
         HUVEC, Th1 cytokines, IFN-γ, TNF-α 
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INTRODUCTION 
  

Thrombophila is a condition when a patient has a tendency to form blood clots. 

This can be a life-threatening event if the clots restrict blood flow.  Recent research 

suggests a possible correlation between inherited thrombophila and recurrent fetal loss.  

Genetic markers for these clotting factors include factor V Leiden, the prothrombin 

G20210A polymorphism, activated protein C resistance, and protein S deficiency in first 

trimester losses.  Factor V Leiden has been shown to be significantly associated with 

early (before 13 weeks gestation) as well as late (after 22 weeks gestation) pregnancy 

losses.  Fibrinogen-like protein 2 (Fgl2) may be another genetic marker for thrombosis 

related to recurrent fetal loss.   

 Fibrinogen-like protein 2 (Fgl2, fibroleukin) was first isolated in 1987 by Koyama, 

et al.1 from cytotoxic T lymphocytes.  Fgl2 was described as a novel prothrombinase and 

procoagulant due to its ability to bypass the traditional coagulation pathway.   

 The coagulation system consists of an extrinsic and intrinsic pathway.  The 

extrinsic pathway is the initiation of a cascade of sequential activation of coagulation 

factors.  The intrinsic pathway employs the use of cofactors that are involved in the 

maintenance of this clotting cascade.  At the heart of this cascade, tissue factor (a 

procoagulant) initiates the activation of several factors culminating in the activation of 

prothrombin to thrombin (by factor Xa in the presence of coenzyme Va). Thrombin then 

cleaves the zymogen fibrinogen to fibrin, which is subsequently cross-linked and 

becomes the fibrin clot.  Fibroleukin was shown to directly cleave prothrombin to 

thrombin in a murine model for virus-induced fulminant hepatic failure2,3,and 4.  
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Studies conducted in mouse model systems demonstrate the role of Fgl2 in 

thrombosis during MHV-3-virus-induced hepatitis5.  mRNA transcripts of Fgl2 and Fgl2 

protein were detected in liver reticuloendothelial cells, followed by fibrin deposition and 

widespread hepatic necrosis following MHV-3 infection.  Neutralizing antibodies to Fgl2 

were able to prevent this scenario, implicating the role of Fgl2 in the fibrin deposition and 

consequent hepatic pathology.  Now linked to thrombosis, Fgl2 was evaluated for a 

possible role in fetal loss.   

Interference of blood supply to the fetus through clotting of the placental/fetal 

vessels is caused by proteins or cytokines that are produced by immune cells within the 

lining of the uterus.  Initial exposure to pro-inflammatory cytokines is necessary to 

stimulate invasion of the blastocyst and formation of new blood vessels at the time of 

implantation.  Prolonged exposure of pro-inflammatory cytokines to the pregnancy is 

detrimental.  For pregnancy to be successful, a change in balance of secretion of 

cytokines from pro-inflammatory to anti-inflammatory cytokines must occur (shift from a 

Th1 to a Th2 response). During idiopathic recurrent miscarriage, studies point to a Th1 

response dominating over a Th2 response.  This failure to shift from a Th1 to a Th2 

response in early pregnancy (pro-inflammatory to anti-inflammatory cytokines) is known 

to be detrimental to pregnancy.   

Loss of pregnancies in mice after IFN-γ injections has been demonstrated6.  The 

same study also showed the ability of IFN-γ to up-regulate the expression of Fgl2 in the 

basal uterine deciduas of mice and went on to show that the inhibition of Fgl2 

prothrombinase activity was able to prevent cytokine-induced fetal loss normally 

characterized by fibrin deposition.  
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 Other studies provide additional support to the hypothesis that Th1 cytokines up-

regulate the expression of Fgl2.  One study demonstrates the ability of IL-2 to up-

regulate Fgl2 expression in a murine macrophage cell line, whereas IL-4 (a Th2 cytokine) 

did not increase Fgl2 production by the mouse macrophages7.  TNF-α treatment of 

cultured porcine endothelial cells was also shown to increase the expression of porcine 

Fgl28.  These studies provide evidence that Fgl2 expression is up-regulated by cytokines 

released during a Th1-type response.     

 Promoter, intron, and exon regions within the human Fgl2 gene have been 

identified, along with different polyadenylation addition signals, which give rise to two 

mRNA species7.  Despite the work completed on mouse Fgl2, little has been published 

regarding the regulation of the human gene and its characterization for polymorphisms.   

 Constitutive expression of human Fgl2 has been shown in CD4+, CD8+, and cells 

of the small intestine9,10.  Conditional expression has been demonstrated by the increased 

presence of Fgl2 mRNA seen in endothelial cells and macrophages in patients with acute 

and viral hepatitis5.  Uterine tissues taken from fetal losses during the first trimester also 

show an increased expression of Fgl2 in trophoblast cells6.   

Estrogen has long been known to have a protective role in thrombophilia 

environments.  The risk of cardiovascular disease in pre-menopausal women is much 

lower than that of men.  The incidence of coronary artery disease and stroke in post-

menopausal women (when estrogen levels decrease) rises to equal that of men.  Estrogen 

has also been known to play an important role in the maintenance of a healthy pregnancy.  

Throughout pregnancy, a steady increase in the amount of estrogen produced by the 

placenta regulates the production of progesterone over the full term.  Estrogen also guides 
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the maturation of fetal lungs, kidneys, liver, and adrenal glands and plays a role in 

promoting blood flow within the uterus.  The association between estrogen and 

thrombosis may also indicate a relationship with estrogen and the thrombosis associated 

with Fgl2 expression.   

            In this study, the human Fgl2 gene was sequenced and variations from the 

published sequence were identified. The frequencies of these polymorphisms were 

established in a control population as well as a population of women suffering from 

recurrent fetal losses.  Twelve single-nucleotide polymorphisms (SNPs) were identified 

in the gene and analyzed for an association with recurrent fetal loss.  The expression of 

Fgl2 by human umbilical vein endothelial cells (HUVECS) was examined under normal 

and Th1 cytokine conditions to evaluate if Th1 cytokines influence the expression of the 

Fgl2 gene in human endothelial cells.  Cells were also challenged with estrogen in 

combination with Th1 cytokines and evaluated for Fgl2 expression.    

 
MATERIALS AND METHODS 
 
PCR/Sequencing 

 A population of human DNA samples was collected consisting of cases and 

controls.  All samples were from female donors and cases were defined as females who 

had suffered from three or more consecutive miscarriages.  PCR primers were designed 

to amplify the Fgl2 gene (NCBI accession number AF468959)11 in 10 short fragments 

defining nucleotide +1 as the start of translation. Table 1 shows the PCR primers used as 

well as their nucleotide location in the gene.  A PCR master mix was prepared consisting 

of forward and reverse primers, Amplitaq DNA polymerase (Applied Biosystems), 

deionized H2O, and the PCR master mix MasterAmp 2x PCR PreMix J (Epicentre).  
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Table 2A gives the final concentrations of all ingredients used in the PCR mix. 

MasterAmp J includes 200μM of each dNTP, buffer, 3.0mM MgCl2, and 8x MasterAmp 

PCR Enhancer (with Betaine).  After adding 8ng/μl DNA template to the reaction 

mixture, the experiment was run under the thermocycling conditions listed in Table 2B.  

As shown in Table 2B, the DNA was denatured at 950C for one minute, annealed at 550C 

for one minute, and extended at 720C for one minute.   

 An ExoSAP-IT (USB Corporation) clean-up reaction was performed on the PCR 

product to prepare the samples for a sequencing PCR.  Six microliters of ExoSAP-IT was 

added to 10μl PCR product and was held at 370C for 30 minutes and then heated to 990C  

for 15 minutes as shown in Table 3.  The BigDye® Terminator v1.1 Cycle Sequencing 

Kit (Applied Biosystems) was used to prepare the samples for automated sequencing on 

the ABI 3100 genetic analyzer.  A sequencing master mix was made consisting of 

Sequencing Mix v.1.1, Sequencing Buffer, 3.2pm/μl sequencing primer, deionized water, 

and 3μl PCR product. Final concentrations of each additive are listed in Table 4.  An 

additional ethanol precipitation reaction (Table 5) was added to further clean-up the 

samples before the addition of the 20μl formamide to each sample.  Samples were then 

sequenced on the ABI3100 in a 96-well format. 
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Cell Culture 

Three HUVEC cell lines (from two newborn female Caucasian and one newborn 

male Caucasian) were obtained from Clonetics-Bio Whittaker and subcultured in an 

EGM-MV (Cambrex) medium containing 10ng/ml human recombinant epidermal growth 

factor (hEGF), 1 μg/ml hydrocortisone, 50 μg/ml gentamicin, 50 ng/ml amphotericin-B, 3 

mg/ml bovine brain extract  (BBE) and 5% FBS (fetal bovine serum).  At 80-90% 

confluence, the cells (P5) were challenged with 10ng/ml of recombinant human IL-2, 
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10ng/ml recombinant human TNF-α/TNFSF1A, or 10ng/ml recombinant human IFN-γ 

(R&D Systems).  An additional experiment consisted of the addition of 10ng/ml 

recombinant human TNF-α/TNFSF1A in combination with 10-6 molar β-estrogen. IL-2 

was reconstituted in 4mM HCl + 1% BSA while TNF-α and IFN-γ were reconstituted 

in .01M PBS (pH 7.4) + 1% BSA according to the accompanying protocol (R&D 

Systems).  β-estrogen was diluted in 100% ethanol and growth media.  Because it is 

known that IL-2 does not interact with endothelial cells, the addition of IL-2 to the 

HUVECs was used as a protein control to demonstrate the protein specificity of any 

response to IFN-γ and TNF-α.  To account for any cellular response due to HCl, BSA, 

PBS buffer or absolute ethanol on the growth conditions, additional control cells were 

challenged with 4mM HCl + 1% BSA, .01M PBS + 1% BSA, or PBS plus ethanol.     

 Cells were harvested at 1 hr, 6hr, 24 hr, and 48hr time points and total RNA was 

collected and purified using the protocol in Table 6.  After RNA purification and 

quantification, the samples were subjected to a reverse-transcriptase enzyme reaction to 

prepare cDNA using the Taqman® Reverse Transcription Reagents Kit (ABI) following 

the manufacturer’s protocol. As shown in Table 7, the reaction consisted of a master mix 

containing reverse Transcriptase Buffer (ABI), MgCl2, dNTPs, Random Hexamers (ABI), 

Rnase I, and reverse transcriptase enzyme.  To this mix, 400ng/ul RNA sample was 

added.   

 Once cDNA was prepared, the samples were subjected to Real-Time PCR for the 

detection of genetic expression of Fgl2 and the housekeeping gene GAPDH using the 

Assays-on-DemandTM Gene Expression Products (TaqMan® MGB probes, FAMTM dye- 
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labeled) by Applied Biosystems.  The set-up for the reactions is shown in table 8A and 

8B and each reaction master mix contained Taqman Master Mix (ABI), 20x primer/probe 

mix, and deionized water.  The reaction was run on the Mx3000P Real-Time PCR 

System (Stratagene).  Fgl2 and GAPDH assays were ran on the same plate to control for 

amplification differences between samples.  Control human RNA (Applied Biosystems) 

was run alongside the experimental samples as a positive control to ensure the success of 

the Fgl2 RT-PCR assay.      
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DATA ANALYSIS 

 The sequence data obtained from the ABI 3100 Genetic Analyzer was entered 

into the software program SeqMan II version 5.06 by DNAStar.  Here, the sequence 

contigs were assembled (based on overlapping sequences) to obtain one single consensus 

sequence that was compared against the published sequence for human Fgl2 (accession 

number AF468959).  Frequencies of the variations between samples among cases and 

controls were analyzed for significance through computation of a Chi-square.  The Chi- 

square was performed by the software program SigmaStat by Jandel Scientific. 

 Results from the RT-PCR Fgl2 gene expression study were analyzed by the 

Mx3000P Real-Time PCR System.  The software performed a comparative quantitation 

based on the generation of a standard curve for relative amounts of template present.  

GAPDH was used as a normalizer to correct for differences in total cDNA input between 

samples.  The Mx3000P software automatically adjusted the levels of Fgl2 for 

differences in the levels of GAPDH when generating the standard curve.  The 

amplification efficiency was then calculated based on the slope of the standard curve 

obtained.   

 

QUALITY CONTROL 

Sequencing 

 Pre-PCR work was conducted within UV workstations in a lab separate from the 

lab used for post-PCR work (thermocycling, clean-up reactions, and sequencing PCR set-

up) to avoid possible routes of contamination.  Two separate clean-up reactions were 

used to remove inhibitors that may interfere with the accurate sequencing of the DNA.  
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Automated sequencing was performed in the forward and reverse directions and 

variations in individual samples from the published sequence were repeated to correct for 

any PCR artifacts or mistakes.  

 

Cell Culture/Gene Expression Assay 

 Each experiment was set-up alongside three control groups for each time point 

collected.  The first control consisted of growth media only (no addition of cytokines or 

buffers).  The second control included the addition of the buffer (PBS or HCl) or PBS 

buffer with ethanol that was used to reconstitute the cytokine or estrogen used in the 

experiment.  The third control was a protein control (IL-2) for the demonstration of a 

cellular response due to the specificity of IFN-γ and/or TNF-α.  During the RNA→cDNA 

reverse transcriptase reaction, as well as the Real Time-PCR reaction, non-template 

controls as well as manufactured human RNA controls were run alongside the 

experimental samples to diagnose any contamination and evaluate the overall 

amplification of the reactions.   The Real Time-PCR primers were designed to span exons 

and eliminate amplification of any genomic DNA contamination. The amplification 

results of Fgl2 were normalized to the housekeeping gene GAPDH to account for any 

differences due to varying starting concentrations of cDNA.  HUVEC cells from three 

different donors were independently cultured and tested for Fgl2 expression.  To ensure 

the success of the Fgl2 RT-PCR expression assay, positive control human RNA was run 

alongside the experimental samples.  The RT-PCR reaction was also performed a 

minimum of two times on separate days for each donor for a total of seven independent 

RT-PCR reactions to ensure reproducibility and consistency in the expression of Fgl2.   
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Statistical Analysis 

 A Chi-square statistical analysis was performed on all sequencing data obtained.  

The calculations were made using the program SigmaStat v1.01.  A p-value was 

calculated to examine whether or not trends in the data were statistically significant.  An 

accurate Chi-square requires all values to be greater than 1 and no more than 20% of 

values less than 5.  A p-value of less than .1 was used as a cut-off to determine statistical 

significance.   

 

RESULTS 

Sequencing 
 
 Twelve SNPs were identified at the positions located in the gene map in Figure 1. 

A T to A change was seen in nucleotide -1285, a T to C change at nucleotide -759, a T to 

A change at -656, an A to G change at -563, a T to C change at -194, a T to C change at 

+110, a G to A at +157, a T to C at +2124, a G to T at +2672, a C to T at +3627, a C to T 

at +3868, and a T to G at +4619.  These variations were observed in a direct submission 

of the Fgl2 genetic sequence to NCBI (AF468959), however there have been no analyses 

or identification of the SNPs in relation to the +1 translation start site published.  This 

study defines polymorphisms found in relation to the +1 translation start site, lists their 

position and frequencies (Table 9) and analyzes the variations for an association with 

women who have suffered from recurrent fetal losses.  As seen in Table 9, the frequency 

of substitutions at nucleotides -1285 and +110 show a statistically significant difference 

between cases and controls (p=.01 and p=.03 respectively).  A trend in the difference 
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between cases and controls is seen in nucleotides -656, -194, +157, +2124, +2672, and 

+3868 but due to small sample size, an accurate Chi square analysis could not be 

performed.  No statistical difference was seen in cases and controls for nucleotides -759, -

563, +3627, and +4619.  A novel variation from the published sequence not previously 

reported to date is a nucleotide deletion between positions +4612-4619.  The reported 

sequence contains a string of 8 T’s while the current study found only 7 T’s occurring in 

every sample sequenced (170 samples).  The raw data and allelic frequencies for the 

occurrence of the variations seen in this study are displayed in Table 10. As listed in the 

Table, the data is broken into race categories (Caucasian and African American) for cases 

and controls.  All races (Caucasian, African American, Asian, and Hispanic) were 

included in the total results column for cases and controls.  An accurate Chi-square 

requires all values to be greater than 1 and no more than 20% of values less than 5. Only 

one of the SNPs, nt. -1285, met this criteria and was determined to be significantly 

related to recurrent fetal loss (p=.01). The variation at nucleotide position +110 was also 

calculated to be significant (p=.03), however the power of the test (.6224) was below the 

desired power of .800, and therefore should be interpreted cautiously.  Due to small 

sample size or frequency of the variant allele, the analysis of the remaining variations by 

calculation of a p-value from a Chi- square was not accurately determined. 
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Gene Expression 

 Constitutive expression of Fgl2:   When grown in EGM-MV growth media, 

expression of Fgl2 by HUVECs was not shown at 1, 6, 24, 48, or 72 hours. Figures 2 and 3 show 

the lack of amplification of these samples, as indicated by the lack of change in fluorescent 

intensity during the reaction.  The human control RNA used as positive controls for the reaction 

did amplify, indicating expression of Fgl2 by the samples (plots not shown).   

 IL-2:   As expected, the addition of 10.0ng/ml of IL-2 to the growth media did not induce 

the expression of Fgl2 in HUVEC cells from male or female donors.  As shown in Figures 4-7, 

no change in fluorescence was seen, indicating lack of amplification of the samples.  Again, the 

human RNA positive controls amplified, indicating the success of the RT-PCR (plots not shown).   

 IFN-γ:   The analysis of total RNA collected from the cells grown in the presence of 

10.0ng/ml IFN-γ showed an increase in the expression of Fgl2 in a female donor at the 24 hour 

time point.  This expression decreases back to zero at 48 hours. The relative change in 

fluorescence for these samples can be seen in the linear plot of amplification in Figure 8 and the 

graph in Figure 9, where an increase in the relative fluorescence indicates amplification 

(expression) of Fgl2.  The expression of Fgl2 grown with IFN-γ in HUVEC cells of a male 

donor shows an increase of expression at 6 and 24 hours with a decrease of expression at 48 

hours , again shown by changes in the relative fluorescent intensity as indicated in Figures 10-11.  

Positive control RNA was also amplified (plots not shown).        

  TNF-α:   HUVEC cells from a male donor grown in the presence of 10.0ng/ml TNF-α 

showed an increased expression of Fgl2 at 24 hours.  This expression decreased at 48 hr.  

Figures 14-15 note the change in relative fluorescent intensity for samples influenced by TNF-α.  
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The HUVEC cells of a female donor did not show expression of Fgl2 in any of the time points 

sampled as shown by the lack of fluorescence seen in Figures12-13. 

 The gender difference seen in the ability of TNF-α to induce Fgl2 expression in the 

HUVEC cells was surprising and led to the investigation of the effect of estrogen on this 

induction of Fgl2 expression by TNF-α.  As shown in Figure 23, TNF-α was able to induce the 

expression of Fgl2 at the 72 hour time-point in HUVECs from a male donor.  When estrogen 

was added to these cells along with TNF-α, the effect was greatly reduced.  This is demonstrated 

by the decrease of fluorescence in the relative quantity chart shown in Figure 23.         

Each reaction plate showed an increase in relative fluorescence by the positive control 

RNA validating the Fgl2 expression assay (plots not shown).  In all cell samples (controls, IL-2, 

IFN-γ, and TNF-α) presence of RNA/cDNA was shown by the expression of GAPDH at all time 

points collected (Figures 16-22 and 24).   Variation in the amplification seen in the GAPDH 

reactions (some samples were amplified at an earlier cycle than others) can be explained by 

differences in starting RNA concentrations for the reaction.  RNA concentrations were quantified 

by spectrophotometry, however, limitations in pipetting and the spectrophotometer used may 

have caused slight variations in concentrations when diluting the RNA for use in the cDNA and 

subsequent RT-PCR reactions.  Using GAPDH as a control gene to assess the expression of RT-

PCR assays has recently been under debate due to the variability of its expression levels between 

the cells of different tissues and while under different experimental conditions12,13,14.  For this 

study, however, all RNA samples were prepared from endothelial cells.  Additionally, a precise 

quantification of cDNA expression for Fgl2 was not needed, as the goal of the project was 

simply to differentiate between a yes/no result based on the presence or absence of a change in 

the relative fluorescent intensities obtained for Fgl2 expression.     
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Well:
A5-Medium 1 hr

B5-Medium 6 hr

C5-Medium 24 hr

D5-Medium 48 hr

E5-Medium 72 hr

F5-PBS 1 hr

G5-PBS 6 hr

H5-PBS 24 hr

A6-PBS 48 hr

B6-PBS 72 hr

C6-HCl 1hr

D6-HCl 6 hr

E6-HCl 24 hr

F6-HCl 48 hr

G6-HCl 72hr

Fluorescence

FGL2 Expression

RT-PCR Amplification Plot      
(65 Cycles)

 

Figure 2  FGL2 Expression in HUVEC Controls:  Real-Time PCR Amplification Plot  
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Figure 3  FGL2 Expression in HUVEC Controls:  Relative Quantity Chart 
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RT-PCR Amplification Plot      
(56 Cycles)

HUVECS + IL-2
Female/NB/Caucasian 
HUVEC cells

Well:

A9-Medium 1 hr             
B9-Medium 6 hr             
C9-Medium 24 hr            
D9-Medium 48 hr             
E9-Medium 72 hr                               
F9-Control HCl 1 hr         
G9-Control HCl 6 hr     
H9-Control HCl 24 hr   
A10-Control HCl 48 hr 
B10-Control HCl 72 hr 
H10-IL-2, 1 hr             
A11-IL-2, 6 hr               
B11-IL-2, 24 hr          
C11-IL-2, 48 hr           
D11-IL-2, 72 hr

 

Figure 4  Effects of IL-2 on FGL2 Expression in HUVEC cells, Female donor 

 

1 hr

6 hr

24 hr

48 hr

72 hr
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48 hr

72 hr

IL-2HCl (Buffer Control)

Relative Quantity Chart:  FGL2 expression  
Addition of IL-2 to HUVECS (Female)

 

Figure 5 Effects of IL-2 on FGL2 Expression in HUVEC cells, Female Donor 
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RT-PCR Amplification Plot      
(65 Cycles)

HUVECS + IL-2
Male/NB/Caucasian  
HUVEC Cells

Well:                     
A1- Medium 1 hr        
B1- Medium 6 hr        
C1- Medium 24 hr       
D1- Medium 48 hr    
E1- HCl 1 hr              
F1- HCl 6 hr              
G1- HCl 24 hr            
H1- HCl 48 hr            
E2- IL-2 1 hr              
F2- IL-2 6 hr              
G2- IL-2 24 hr             
H2- IL-2 48 hr

 

Figure 6  Effects of IL-2 on FGL2 Expression in HUVEC cells, Male Donor 

1 hr

6 hr

24 hr

48 hr

1 hr

6 hr

24 hr

48 hr

HCl (Buffer Control) IL-2

Relative Quantity Chart:  FGL2 expression 
Addition of IL-2 to HUVECS (Male)

 

Figure 7  Effects of IL-2 on FGL2 Expression in HUVEC cells, Male Donor 
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Female/NB/Caucasian 
HUVEC Cells

Well:                         
A5- Medium 1 hr            
B5- Medium 6 hr            
C5- Medium 24 hr          
D5- Medium 48 hr          
E5- Medium 72 hr      
C6- PBS 1 hr                  
D6- PBS 6 hr                    
E6- PBS 24 hr                 
F6- PBS 48 hr                  
G6- PBS 72 hr                 
E7- IFN-γ 1 hr                
F7- IFN-γ 6 hr              
G7- IFN-γ 24 hr
H7- IFN-γ 48 hr              
A8- IFN-γ 72 hr

IFN-γ
24 hr

HUVECS + IFN-γ

RT-PCR Amplification Plot
(58 Cycles)

 

Figure 8  Effect of IFN-γ on FGL2 expression in HUVEC cells, Female Donor  
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Addition of IFN-γ to HUVECS (Female)

 

Figure 9  Effects of IFN-γ on FGL2 Expression in HUVEC cells, Female Donor 
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HUVECS + IFN-γ

RT-PCR Amplification Plot
(65 Cycles)

Male/NB/Caucasian 
HUVEC Cells
Well:
A5- Medium 1 hr            
B5- Medium 6 hr            
C5- Medium 24 hr          
D5- Medium 48 hr          
C6- PBS 1 hr                  
D6- PBS 6 hr                    
E6- PBS 24 hr                 
F6- PBS 48 hr                  
A7- IFN-γ 1 hr                
B7- IFN-γ 6 hr
C7- IFN-γ 24 hr
D7- IFN-γ 48 hr

IFN-γ
24 hr

IFN-γ
6 hr → IFN-γ

24 hr

 

Figure 10  Effects of IFN-γ on FGL2 expression in HUVEC cell, Male Donor 

Relative Quantity Chart:  FGL2 expression            
Addition of IFN-γ to HUVECS (Male)

1 hr
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48 hr
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Figure 11  Effects of IFN-γ on FGL2 Expression in HUVEC cells, Male Donor 
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RT-PCR Amplification Plot
(58 Cycles)

HUVECs + TNF-α
Female/NB/Caucasian 
HUVEC Cells
Well:                         
A5- Medium 1 hr            
B5- Medium 6 hr            
C5- Medium 24 hr          
D5- Medium 48 hr          
E5- Medium 72 hr      
F5- PBS 1 hr                  
G5- PBS 6 hr                    
H5- PBS 24 hr                 
A6- PBS 48 hr                  
B6- PBS 72 hr                 
B8- TNF-α 1 hr                
C8- TNF-α 6 hr              
D8- TNF-α 24 hr              
E8- TNF-α 48 hr              
F8- TNF-α 72 hr

 

Figure 12  Effects of TNF-α on FGL2 Expression in HUVEC cells, Female Donor 
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Relative Quantity Chart:  FGL2 expression
Addition of IFN-γ to HUVECS (Female)

 

Figure 13  Effects of TNF-α on FGL2 Expression in HUVEC cells, Female Donor 
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RT-PCR Amplification Plot
(65 Cycles)

HUVECS + TNF-α
Male/NB/Caucasian 
HUVEC Cells
Well:
A5- Medium 1 hr            
B5- Medium 6 hr            
C5- Medium 24 hr          
D5- Medium 48 hr          
E5- PBS 1 hr                  
F5- PBS 6 hr                    
G5- PBS 24 hr                 
H5- PBS 48 hr                  
E7- TNF-α 1 hr                
F7- TNF-α 6 hr
G7- TNF-α 24 hr
H7- TNF-α 48 hr

TNF-α

24 hr →

 

Figure 14  Effects of TNF-α on FGL2 Expression in HUVEC cells, Male Donor 
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Figure 15  Effects of TNF-α on FGL2 Expression in HUVEC cells, Male Donor 
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RT-PCR Amplification Plot
(65 Cycles)

Well:
A5-Medium 1 hr
B5-Medium 6 hr
C5-Medium 24 hr
D5-Medium 48 hr
E5-Medium 72 hr
F5-PBS 1 hr
G5-PBS 6 hr
H5-PBS 24 hr
A6-PBS 48 hr
B6-PBS 72 hr
C6-HCl 1hr
D6-HCl 6 hr
E6-HCl 24 hr
F6-HCl 48 hr
G6-HCl 72hr

GAPDH Expression

 

Figure 16  GAPDH Expression in Control HUVEC cell samples 

 

GAPDH Expression

RT-PCR Amplification Plot
(56 Cycles)

Female/NB/Caucasian 
HUVEC cells
Well:
A9-Medium 1 hr             
B9-Medium 6 hr             
C9-Medium 24 hr            
D9-Medium 48 hr             
E9-Medium 72 hr                               
F9-Control HCl 1 hr         
G9-Control HCl 6 hr       
H9-Control HCl 24 hr   
A10-Control HCl 48 hr 
B10-Control HCl 72 hr 
H10-IL-2, 1 hr             
A11-IL-2, 6 hr               
B11-IL-2, 24 hr          
C11-IL-2, 48 hr           
D11-IL-2, 72 hr

 

Figure 17  Effects of IL-2 on GAPDH Expression in HUVEC cells, Female Donor 
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GAPDH Expression

RT-PCR Amplification Plot
(58 Cycles)

Female/NB/Caucasian 
HUVEC Cells
Well:
A5- Medium 1 hr            
B5- Medium 6 hr            
C5- Medium 24 hr          
D5- Medium 48 hr          
E5- Medium 72 hr        
C6- PBS 1 hr                  
D6- PBS 6 hr                    
E6- PBS 24 hr                 
F6- PBS 48 hr                  
G6- PBS 72 hr                 
E7- IFN-γ 1 hr                
F7- IFN-γ 6 hr              
G7- IFN-γ 24 hr              
H7- IFN-γ 48 hr              
A8- IFN-γ 72 hr

 

Figure 18  Effects of IL-2 on GAPDH Expression in HUVEC cells, Male Donor 

RT-PCR Amplification Plot
(65 Cycles)

GAPDH Expression

Male/NB/Caucasian 
HUVEC Cells
Well:
A5- Medium 1 hr            
B5- Medium 6 hr            
C5- Medium 24 hr          
D5- Medium 48 hr          
C6- PBS 1 hr                  
D6- PBS 6 hr                    
E6- PBS 24 hr                 
F6- PBS 48 hr                  
A7- IFN-γ 1 hr                
B7- IFN-γ 6 hr              
C7- IFN-γ 24 hr              
D7- IFN-γ 48 hr

 

Figure 19  Effects of IFN-γ on GAPDH Expression in HUVEC cells, Female Donor 
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GAPDH Expression

RT-PCR Amplification Plot
(65 Cycles)

Male/NB/Caucasian  
HUVEC Cells
Well:

E1- HCl 1 hr              
F1- HCl 6 hr              
G1- HCl 24 hr            
H1- HCl 48 hr            
E2- IL-2 1 hr              
F2- IL-2 6 hr              
G2- IL-2 24 hr             
H2- IL-2 48 hr

 

Figure 20  Effects of IFN-γ on GAPDH Expression in HUVEC cells, Male Donor 

GAPDH Expression

RT-PCR Amplification Plot
(65 Cycles)

Male/NB/Caucasian 
HUVEC Cells
Well:
A5- Medium 1 hr            
B5- Medium 6 hr            
C5- Medium 24 hr          
D5- Medium 48 hr          
E5- PBS 1 hr                  
F5- PBS 6 hr                    
G5- PBS 24 hr                 
H5- PBS 48 hr                  
E7- TNF-α 1 hr                
F7- TNF-α 6 hr
G7- TNF-α 24 hr              
H7- TNF-α 48 hr

 

Figure 21  Effects of TNF-α on GAPDH Expression in HUVEC cells, Female Donor 

 



www.manaraa.com

   

  

39

GAPDH Expression

RT-PCR Amplification Plot
(58 Cycles)

Female/NB/Caucasian 
HUVEC Cells
Well:                         
A5- Medium 1 hr            
B5- Medium 6 hr            
C5- Medium 24 hr          
D5- Medium 48 hr          
E5- Medium 72 hr      
F5- PBS 1 hr                  
G5- PBS 6 hr                    
H5- PBS 24 hr                 
A6- PBS 48 hr                  
B6- PBS 72 hr                 
B8- TNF-α 1 hr                
C8- TNF-α 6 hr              
D8- TNF-α 24 hr              
E8- TNF-α 48 hr              
F8- TNF-α 72 hr

 

Figure 22  Effects of TNF-α on GAPDH Expression in HUVEC cells, Male Donor 

Relative Quantity Chart:  FGL2 Expression 
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Figure 23  Effects of the addition of Estrogen to TNF-α induced expression of FGL2 
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GAPDH Expression

RT-PCR Amplification Plot
(64 Cycles)

Male/NB/Caucasian 
HUVEC Cells

Well:
B6- Medium 24 hr            
B7- Medium 48 hr            
B8- Medium 72 hr           
C6- PBS 24 hr                
C7- PBS 48 hr                  
C8- PBS 72 hr                    
D6- PBS +EtOH 24 hr                 
D7- PBS +EtOH 48 hr                  
D8- PBS +EtOH 72 hr                
E6- TNF-α 24 hr
E7- TNF-α 48 hr              
E8- TNF-α 72 hr             
F6- TNF-α +Estragen 24 hr                        
F7- TNF-α +Estragen 48 hr                  
F8- TNF-α +Estragen 72 hr

 

Figure 24  Effects of TNF-α and Estrogen on GAPDH Expression 

 

DISCUSSION 

The T→A substitution at nucleotide -1285 is located 30 bp downstream of a conservative 

MIR (Mammalian Interspersed Repeat) region located in the 5’ UTR.  MIRs have been 

implicated in the expression of several mammalian genes, providing alternative splice sites, 

polyadenylation sites and additional protein-coding information15,16.  MIR integration has 

recently been hypothesized to play a role in gene control and evolution17.  This SNP may or may 

not affect gene transcription or gene expression.  It may, however, be a marker for identifying 

cases of recurrent fetal loss.   

Nucleotide +110 is located in exon 1 of the coding region of FGL2 and involves a T→C 

substitution.  This substitution appears to be a silent mutation, as it changes the reading frame 

from GAT to GAC, both coding for aspartic acid.  This polymorphism was present in the African 
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American samples tested but was not seen in the White population tested.  A low number of 

African American cases present could account for the apparent significance of the calculated p-

value between cases and control samples tested.  Increasing the study size to include more 

African American cases may eliminate or reduce the significance of this variation.  

 The novel variation from the published sequence between nucleotides 4612-4619 (7 T’s 

instead of 8 T’s, followed by 8 G’s) was seen in every sample tested.  Since no representation of 

the published sequence was discovered in 170 samples for this region of the 3’ UTR, a mistake 

in the original sequence could be possible, since no mention of a nucleotide deletion was made.   

Small sample size did not allow the analysis of six additional polymorphisms identified 

(nt  T-656A, T-194C, G+157A, T+2124C, G+2672T, and C+3868T).  Differences in the 

frequency of the variant allele between recurrent fetal loss cases and controls are seen and may 

suggest a trend for these SNPs.  A larger study may indicate a significance that can not be seen in 

the present study, as many of these SNPs are located within the promoter and other coding 

regions of the Fgl2 gene.  T-656A is located 20 bp upstream of TCF1 Ets, a transcription factor 

binding site;18 the T→C variation at position -194 is located within the promoter region, half-

way between binding sites for C/EBP and SP118.  T+2124C and G+2672T are located in intron 1 

of the non-coding region and flank the ends of another conservative MIR region.  Nucleotide 

+3868 (C→T) is located within the Alu insertion in the 3’UTR of the Fgl2 gene.  Alu insertions 

have been associated with thrombosis and heart disease when located in the introns of the TPA 

(tissue plasminogen activator) and ACE (angiotensin-converting enzyme) genes19,20.   

 The G→A variation seen at position +157 has recently been suggested as a marker for 

severe periodontal disease21.  Located within the coding region of exon 1, the polymorphism 

causes a GGG→GAG change in the reading frame which is responsible for an amino acid 
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change from Gly→Glu (glycine to glutamic acid) which can lead to a significant change in the 

tertiary structure of a protein. Recent literature supports the hypothesis that chronic oral infection 

like periodontal disease contributes to pregnancy complications such as preeclampsia, preterm 

birth, fetal growth restriction, and fetal loss22,23.   Variations at positions A210G, T165C, 

T1239C, and C3124T have been reported in the literature for the sequence associated with 

accession number AF468959, but were not seen in the present study in any sample.    

 Failure to shift from a Th1 to a Th2-type immune response during early pregnancy is 

known to be detrimental to a successful pregnancy.  This study has shown the ability of the Th1 

cytokines IFN-γ and TNF-α to induce the expression of Fgl2 in HUVECs strengthening the role 

of Fgl2 expression in the thrombosis associated with human fetal loss.  The lack of an 

endothelial cell response to the addition of IL-2 further demonstrates the specificity of the 

response to the Th1 cytokines IFN-γ and TNF-α.   

 A small gender difference was seen in Fgl2 expression induced by IFN-γ, in that Fgl2 

was expressed at both 6 and 24 hours in cells from a male donor, and only at 24 hours in cells 

from a female donor.  The sex difference in the expression of Fgl2 in response to TNF-α was not 

anticipated and led to the evaluation of the effect of estrogen on this induced expression.  As 

demonstrated, the addition of estrogen and TNF-α to the male donor HUVEC cells was able to 

greatly reduce the effect seen by TNF-α alone. This supports the large gender difference seen in 

the expression of Fgl2 in HUVECs induced by TNF-α.        

Clotting of the vascular vessels of the placenta and fetus interferes with adequate blood 

supply to the fetus.  Thrombosis due to the expression of Fgl2 has been shown to cause fetal loss 

in mice and increased expression of Fgl2 in human trophoblast cells in uterine tissue taken from 

fetal losses suggests a similar role for Fgl2 in the thrombosis associated with human fetal loss.  
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The ability of estrogen to eliminate the response of HUVECs to TNF-α in male cells (mimicking 

the female system) suggests an additional role of estrogen in maintaining a healthy pregnancy.  

This role could be to protect the pregnancy during times of infection and a Th1-type immune 

response from activating the prothrombinase Fgl2 and thus prevent clotting of the placental 

vessels.  This effect might also be involved in the thrombosis associated with cardiovascular 

disease.    

A complex balance between vasodilatory and vasoconstrictory factors and mediators 

maintains vascular function24,25.  The incidence of coronary artery disease and stroke in women 

rises after menopause (when the levels of estrogen decrease), pointing at the important vascular 

role of estrogen.  Coronary artery disease and stroke are the primary causes of death in women 

after the age of 60. There is about a 50% chance of a post-menopausal woman to develop heart 

disease in her lifetime, while there is a 30% probability she will die from it26.  Stroke remains a 

leading cause of disability and death of women and recent data suggest that one in six women in 

western countries will die of stroke27. The gender difference exhibited by endothelial cells in 

response to TNF-α and its ability to induce expression of the procoagulant Fgl2 invites 

additional studies into this effect in relation to cardiovascular disease.  Future research is 

suggested to compare HUVECs as well as macrophages from pre-menopausal female donors to 

post-menopausal female donors under conditions favoring the Th1 response (TNF-α) and the 

induction of Fgl2 gene expression.              
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